

• This Slideshow was developed to accompany the textbook

• Big Ideas Algebra 2

• By Larson, R., Boswell

- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy <u>rwright@andrews.edu</u>

- General way to solve linear equations
 - Get the variables all on one side
 - Get everything away from the variables

Always follow the Golden Rule!!!

$$3x + 6 = 0$$

$$3x = -6$$

$$x = -2$$

$$2(x + 1) = 5x$$

$$2x + 2 = 5x$$

$$2 = 3x$$

$$\frac{2}{3} = x$$

$$4(x + 5) \ge 16 x + 5 \ge 4 x \ge -1 -2x + 5 < 17 - x -x + 5 < 17 -x < 12 x > -12 x > -12$$

$$2x + 5y = 12$$

$$5y = 12 - 2x$$

$$y = \frac{12 - 2x}{5}$$

$$3rh + 5h = 7$$

$$h(3r + 5) = 7$$

$$h = \frac{7}{3r + 5}$$

• A real estate agent's base salary is \$22,000 per year. The agent earns a 4% commission on total sales. How much must the agent sell to earn \$60,000 in one year?

 $Total money = base \ salary + commission \ percent \cdot sales$ 60000 = 22000 + 0.04x38000 = 0.04xx = 950,000

0-02 Hea Drahla	m Salving Stratogies and Models	
	III DUWINY DECOLOGIES AND INVUES	
Common formulas (Memori	ze!)	
• Distance/Rate	d = rt	
• Temperature	$F = \frac{9}{5}C + 32$	
Area of a Triangle	$A = \frac{1}{2}bh$	
Area of a Rectangle	$A = \tilde{\ell} w$	
• Perimeter of a Rectangle	$P = 2\ell + 2w$	
• Area of a Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h$	
• Area of a Circle	$A = \pi r^2$	
Circumference of a Circle	$C = 2\pi r$	
		12

0-02 Use Problem Solving Strategies and Models Easiest to start by writing an equation in words. This is called a verbal model. Ways to find a verbal model Use a formula Look for a pattern

- You probably think this way in your head already.
- Draw a diagram

Distance = rate \cdot time 12000 mi = 16.7 $\frac{mi}{hr} \cdot t$ t = 719 hr = 29.9 days

Subtracting consecutive heights shows that the paramotorist is losing 210 ft per min.

$$\begin{aligned} \text{Height} &= \text{initial height} - \text{rate} \cdot \text{time} \\ h &= 2400 \text{ ft} - 210 \frac{\text{ft}}{\min} \cdot 8 \min \\ h &= 720 \text{ ft} \end{aligned}$$

• A bear walks 10 miles towards the west. Then it turns around and walks back east for 2 miles to try to catch a fish. After lunch it walks 5 more miles west until it finds a place to sleep. How far is the bear's sleeping location from its starting position?

Draw a diagram (west is negative)

-10 mi. + 2 mi. - 5 mi. = -13 mi.

13 miles to the west

16

- Absolute Values
 - Distance from origin to coordinate
 - In one dimension, turns the number positive
- |x| = b
 - Distance between *x* and 0 is *b*
- |x k| = b
 - Distance between *x* and *k* is *b*

18

Steps to Solve Absolute Value Equations

- 1. Write two equations.
 - a. One with the absolute value expression positive.
 - b. One with the absolute value expression negative.
- 2. Solve each equation.
- 3. Check your solutions.

x - 3 = 10 or - (x - 3) = 10 x = 13 or x - 3 = -10 x = 13 or x = -7 2x + 5 = 3x or - (2x + 5) = 3x5 = x or 2x + 5 = -3x

$$x = 5 \text{ or } 5 = -5x$$

x = 5 or x = -1 (-1 does not check)

20

• Solve

• |4x - 1| = 2x + 9

$$4x - 1 = 2x + 9 \rightarrow 2x - 1 = 9 \rightarrow 2x = 10 \rightarrow x = 5$$

$$OR$$

$$-(4x - 1) = 2x + 9 \rightarrow -4x + 1 = 2x + 9 \rightarrow -6x + 1 = 9 \rightarrow -6x = 8 \Rightarrow x = -\frac{8}{6}$$

$$= -\frac{4}{3}$$

21

$$2x - 7 > 1 \rightarrow 2x > 8 \rightarrow x > 4$$

$$OR$$

$$-(2x - 7) > 1 \rightarrow 2x - 7 < -1 \rightarrow 2x < 6 \rightarrow x < 3$$

$$x < 3 \text{ or } x > 4$$

$$7 - x \le 4 \rightarrow -x \le -3 \rightarrow x \ge 3$$

$$OR$$

$$-(7 - x) \le 4 \rightarrow 7 - x \ge -4 \rightarrow -x \ge -11 \rightarrow x \le 11$$

 $3 \le x \le 11$

The distance between the actual weight and the target weight should be less than or equal to the tolerance.

 $|x - 1950| \le 350$ $x - 1950 \le 350 \Rightarrow x \le 2300$ OR $-(x - 1950) \le 350 \Rightarrow x - 1950 \ge -350 \Rightarrow x \ge 1600$ $1600 \le x \le 2300$

- Find the slope of the line passing through the given points. Classify as *rises*, *falls*, *horizontal*, or *vertical*.
 - (7, 3), (-1, 7)
 - (7, 1), (7, -1)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 3}{4 - 0} = \frac{5}{4}; \text{ rises}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 3}{-1 - 7} = \frac{4}{-8} = -\frac{1}{2}; \text{ falls}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{7 - 7} = -\frac{2}{0} = \text{ undefined}; \text{ vertical}$$

Line 1: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 8}{2 - (-2)} = -\frac{12}{4} = -3$ Line 2: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 1}{-2 - (-5)} = \frac{1}{3}$ Perpendicular

- it passes through (-1, 6) and has a slope of 4.
- it passes through (-1, 2) and (10, 0)

Given slope and point

$$y - y_1 = m(x - x_1)$$

$$y - 6 = 4(x - (-1))$$

$$y - 6 = 4x + 4$$

$$y = 4x + 10$$

Given two points

$$m = \frac{y_2 - y_2}{x_2 - x_1} = \frac{0 - 2}{10 - (-1)} = -\frac{2}{11}$$
$$y - y_1 = m(x - x_1)$$
$$y - 0 = -\frac{2}{11}(x - 10)$$
$$y = -\frac{2}{11}x + \frac{20}{11}$$

31

Two points: (1, -5), (6, 20)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{20 - (-5)}{6 - 1} = \frac{25}{5} = 5$$

$$y - y_1 = m(x - x_1)$$

$$y - (-5) = 5(x - 1)$$

$$y + 5 = 5x - 5$$

$$y = 5x - 10$$

- 1. Choose a reasonable range of *x* values usually including negatives.
- 2. Substitute each *x* value into the function to find the corresponding *y* value.
- 3. Plot the points on a coordinate plane.
- 4. Draw the line through the points.

Making a table always works to graph functions

34

		0-05 Graph	Equation		les			Solution of the	
• Graph y =	$x^2 - 3$								
						•			
									35
Make a table									
х	-3 3	-2	-1	0		1			2
У	6 6	1	-2	-3		-2	2		1

Graph the points and draw a curve

y-intercept is where the line crosses the y-axis

$$y = -2x + 0$$

$$m = -2 = -\frac{2}{1}; b = 0$$

$$y = x - 3$$

$$m = 1 = \frac{1}{1}; b = -3$$

$$f(x) = 2 - x$$

$$f(x) = -x + 2$$

$$m = -1 = -\frac{1}{1}; b = 2$$

- Ax + By = C
 - A, B, and C are integers
- To graph
 - 1. Find the *x* and *y*-intercepts by letting the other variable = 0
 - 2. Plot the two points
 - 3. Draw a line through the two points

- *x*-intercept:
- Ax + B(0) = C
- Ax = C

Graph Equations

- $x = \frac{c}{A}$
- *y*-intercept:
- A(0) + By = C
- B*y* = C

•
$$y = \frac{C}{B}$$

- Vertical Lines
 - *x* = *c*

x-int: $2x + 5(0) = 10 \rightarrow 2x = 10 \rightarrow x = 5$; (5, 0) y-int: $2(0) + 5y = 10 \rightarrow 5y = 10 \rightarrow y = 2$; (0, 2)

Vertical line x-int: (1, 0)

Horizontal line y-int: (0, -4)

- Transformations (changes to graph's size, shape, position, or orientation)
 - Stretch/Shrink
 - *a* is the factor the graph is stretched or shrunk vertically
 - Multiply the *y*-coordinates by *a*
 - Reflection \rightarrow Flips the graph over a line
 - If *a* is negative, the graph will be flipped over the *x*-axis
 - Translation \rightarrow moves graph
 - *h* is how far graph moves to right
 - *k* is how far graph moves up
 - Apply stretch/shrinks and reflections before translations
 - Multiply before adding

Reflected over the x-axis because of the -, shrunk vertically by factor of $\frac{1}{2}$ because of the $\frac{1}{2}$. Reflect the graph over the x-axis first.

Make the distance from each point to the *x*-axis half the distance.

h = 1 and k = 3, so translated right 1 and up 3.

$$y = a|x - h| + k$$
$$y = |x - 2| + 3$$

h = 2, k = 3

Translated 2 right and 3 up. The vertex will be (h, k) = (2, 3)

a = 1

The slope of the right side will be 1. (Translated 2 right and 3 up.)

$$y = a|x - h| + k$$
$$y = \frac{1}{4}|x|$$

h = 0, k = 0 since they are missing

Not translated. The vertex will be (h, k) = (0, 0)

$$a = \frac{1}{4}$$

The slope of the right side will be 1/4. (Shrunk vertically by factor of ¼.)

$$y = a|x - h| + k$$
$$y = -3|x + 1| - 2$$

h = -1, k = -2

Translated 1 left and 2 down. The vertex will be (h, k) = (-1, -2)

a = -3

The slope of the right side will be -3. (Reflected over the x-axis, stretched by factor of 3, translated 1 left and 2 down.)

Vertex is at (-3, 5), so h = -3 and k = 5. The slope of the right side is $-\frac{5}{1} = -5$, so a = -5y = a|x - h| + ky = -5|x + 3| + 5

$$5x - 2y \le 6$$

$$5(0) - 2(-4) \le 6$$

$$8 \le 6$$

Not true, so not a solution

$$5x - 2y \le 6$$

$$5(-3) - 2(8) \le 6$$

$$-15 - 16 \le 6$$

$$-31 \le 6$$

True, so it is a solution

• If the point is not a solution, shade the other side of the line

Graph the line: Vertical line at x = -4. Solid because equal to. Shade the right because that is where the x's are bigger than -4.

Graph line: y-int = 0, slope = -3. Dotted because not equal to. Pick (1, 0) as test point. $y > -3x \rightarrow 0 > -3(1) \rightarrow 0 > -3$. This is true so shade that side of the line.

Graph the line: y-int = 3, slope = 2. Solid because equal to. Pick (0, 0) as test point. $y \le 2x + 3 \rightarrow 0 \le 2(0) + 3 \rightarrow 0 \le 3$. This is true so shade that side of the line.

Graph the absolute value: h = 1, k = -3, a = 3Dotted because not equal to. Pick (1, 0) as test point. $y < 3|x - 1| - 3 \rightarrow 0 < 3|1 - 1| - 3 \rightarrow 0 < -3$. This is false so shade the other side of the line.

• You have two part-time summer jobs, one that pays \$9 an hour and another that pays \$12 an hour. You would like to earn at least \$240 a week. Write an inequality describing the possible amounts of time you can schedule at both jobs.

Rate problem: rate × amount = total

$$9x + 12y \ge 240$$

Greater than sign because the 240 is the smallest we want, so the small side of the sign is pointed at 240.

 $9x + 12y \ge 240$

Graph the line: This is in standard form, so find the intercepts.

x-int: $9x + 12(0) = 240 \rightarrow x \approx 26.7$

y-int: $9(0) + 12y = 240 \rightarrow y = 20$

Solid line because equal to.

Test (0, 0). $9x + 12y \ge 0 \rightarrow 9(0) + 12(0) \ge 240 \rightarrow 0 \ge 240$. This is false, so shade the other side of the line.

Pick any three points in the shaded area. Sample Answers: (15, 12), (24, 4), (3, 20)

- Correlation Coefficient (r)
 - Number between -1 and 1 that measures how well the data fits a line.
 - Positive for positive correlation, negative for negative
 - *r* = 0 means there is no correlation

Positive, $r \approx 0.5$

Negative, $r \approx -1$

No correlation, $r \approx 0$

• Best-fitting line

• Line that most closely approximates the data

• Find the best-fitting line

- 1. Draw a scatter plot of the data
- 2. Sketch the line that appears to follow the data the closest
 - There should be about as many points below the line as above
- 3. Choose two points on the line and find the equation of the line
 - These do not have to be original data points

See example 4 in the textbook to see how to do this on a TI graphing calculator

	0-08	Draw S	catter	Plots an	d Best-	Fitting	Lines		
 Monarch Butterflies: The table shows the area in Mexico used by Monarch Butterflies to spend winter, y, in acres x years after 2006. Approx for the Use yo to pred butter 						eximate the best-fitting line e data. Our equation from part (a) dict the area used by the flies in 2016.			
x	0	1	2	3	4	5	6	7	
у	16.5	11.4	12.5	4.7	9.9	7.1	2.9	1.7	

Sample Answer: y = -1.89x + 14.97

Sample Answer:

y = -1.89(10) + 14.97 = -3.93 acres (they would be gone, extinct!)

Note: Older TI graphing calculators do not have the screen in steps 6 and 7. After selecting the LinReg(ax+b), the screen just shows "LinReg(ax+b)". Press ENTER again to see the result. To see the graph, enter the equation into the Y= screen and press GRAPH.

